The Pleasure of Finding Things Out
  • About Me
  • Reading List
  • Linux
  • Machine learning
  • Python
  • Quick tips
  • R
  • Statistical modeling

The Pleasure of Finding Things Out

Determining Histogram Bin Width using the Freedman-Diaconis Rule

Using the Freedman-Diaconis Rule to determine optimal histogram bin width

more ...

Modifying Cygwin’s Path Prefix

How to change Cygwin’s default path prefix temporarily or permanently

more ...

Simple Example of RSA Encryption and Decryption

An illustrative example of RSA encryption and decryption using small primes

more ...

Interacting with Google Maps Platform Web Services

Obtaining coordinates, elevation, distance and directions using the Google Maps API

more ...

Assessing Goodness-of-Fit Quantitatively and Visually

Assessing goodness of fit using scipy and matplotlib

more ...

Calculating Distance Between Geographic Coordinate Pairs

Using the Haversine formula to compute geographic distances with examples

more ...

Interacting with Oracle from Pandas

Leveraging Pandas to read and write tables in an Oracle database

more ...

Online Mean and Variance Update without Full Recalculation

Updating sample mean and variance to account for new observations without full recalculation

more ...

Utilizing Zero-Width Assertions with grep

Leveraging zero-width assertions in regular expression patterns

more ...

Developing Command Line Applications with argparse and configparser

Using configparser and argparse to develop command line applications in Python

more ...

Representing Empirical Loss Data Visually with ggplot2

Visualizing the fit of parametric distributions to empirical loss data using ggplot2

more ...

Visualizing Population Density by Zip Code with basemap

Introduction to Geoprocessing with mpl_toolkits.basemap utility

more ...

User-Defined Variable Argument Functions in R

Writing functions that accept a variable number of parameters demonstrated using the openxlsx package

more ...

Aggregate Operations in R with data.table

A demonstration of data aggregation using the data.table library

more ...

Performance Optimization with Rcpp

Improving the performance of CPU-bound routines in R programs with Rcpp

more ...

User-Defined Binary Operators in R

Implementing user-defined binary operators in R

more ...

The Beta Function and its Variants

An Investigation of the Complete and Incomplete Beta Functions with use cases in Statistical Modeling

more ...

Four Approaches to Loss Triangle Compilation in R

Various approaches to compiling loss reserving triangles in R

more ...

Communicating Between Processes with Sockets in R

Demonstration of interprocess communication using R’s socket interface

more ...

Clustering in Python with k-means

A walkthrough of the k-means clustering algorithm

more ...

Shared Data Parallel Processing in Python

Sharing data between processes with Python’s multiprocessing library

more ...

LOESS - Nonparametric Scatterplot Smoothing in Python

Examination of the LOESS method with implementation in Python

more ...

Introduction to data.table’s Special Symbols

Working with data.table’s special symbols

more ...

Using scp to Copy Files to Remote Servers

Introduction to the secure copy utility

more ...

Connecting to Virtual Machine Instance via ssh

Connecting to a virtually hosted Ubuntu using ssh

more ...

  • ← Newer
  • Older →

  • Links

    • The Python Standard Library
    • scikit-learn
    • Scipy.org
    • Journal of Machine Learning Research
    • Journal of Statistical Software
    • The Journal of Open Source Software
    • Numerical Algorithms Group
    • Free Software Foundation
    • Casualty Actuarial Society
    • Continuum Analytics
    • American Statistical Association
    • SIAM
    • American Mathematical Society
    • IEEE
    • FermiLab
    • Beyond Your Plateau

© 2019 James D. Triveri · Powered by pelican-bootstrap3, Pelican, Bootstrap

Back to top