The Pleasure of Finding Things Out
  • About Me
  • Reading List
  • Linux
  • Machine learning
  • Python
  • Quick tips
  • R
  • Statistical modeling

The Pleasure of Finding Things Out

Determining Histogram Bin Width using the Freedman-Diaconis Rule

Using the Freedman-Diaconis Rule to determine optimal histogram bin width

more ...

Assessing Goodness-of-Fit Quantitatively and Visually

Assessing goodness of fit using scipy and matplotlib

more ...

Online Mean and Variance Update without Full Recalculation

Updating sample mean and variance to account for new observations without full recalculation

more ...

Representing Empirical Loss Data Visually with ggplot2

Visualizing the fit of parametric distributions to empirical loss data using ggplot2

more ...

Clustering in Python with k-means

A walkthrough of the k-means clustering algorithm

more ...

LOESS - Nonparametric Scatterplot Smoothing in Python

Examination of the LOESS method with implementation in Python

more ...

Introduction to data.table’s Special Symbols

Working with data.table’s special symbols

more ...

Derivation of the Poisson Distribution as a Limiting Case of the Binomial PDF

Derivation of the Poisson as a limiting case of the Binomial PDF

more ...

Kernel Density Estimation in Python

Exploring denisty estimation with various kernels in Python

more ...

Evaluating Classifier Performance in scikit-learn

Assessing the quality of machine learning classifiers with scikit-learn

more ...

Polynomial Interpolation: Newton’s Method

Python implementation of Newton’s method of polynomial interpolation

more ...

Smoothed Empirical Percentile for Percentile Matching

A smoothed empirical percentile implementation in Python

more ...

Goodness of Fit and Significance Testing for Logistic Regression Models

Assessing the quality of fit of a Logistic Regression model

more ...

Estimating Logistic Regression Coefficents From Scratch (Python version)

Estimating Logistic Regression coefficents in Python

more ...

Estimating Logistic Regression Coefficents From Scratch (R version)

Manual estimation of logistic regression coefficents in R

more ...

Derivation of the Normal Equations

Derivation of the Normal Equations via Least Squares and Maximum Likelihood

more ...

  • Links

    • The Python Standard Library
    • scikit-learn
    • Scipy.org
    • Journal of Machine Learning Research
    • Journal of Statistical Software
    • The Journal of Open Source Software
    • Numerical Algorithms Group
    • Free Software Foundation
    • Casualty Actuarial Society
    • Continuum Analytics
    • American Statistical Association
    • SIAM
    • American Mathematical Society
    • IEEE
    • FermiLab
    • Beyond Your Plateau

© 2019 James D. Triveri · Powered by pelican-bootstrap3, Pelican, Bootstrap

Back to top